Algebra: Algebra of complex numbers, addition, 
multiplication, conjugation, polar representation, properties of modulus and 
principal argument, triangle inequality, cube roots of unity, geometric 
interpretations.
Quadratic equations with real coefficients, relations between 
roots and coefficients, formation of quadratic equations with given roots, 
symmetric functions of roots.
Arithmetic, geometric and harmonic progressions, arithmetic, 
geometric  and harmonic means, sums of finite arithmetic and geometric 
progressions, infinite geometric series, sums of squares and cubes of the first 
n natural numbers.
Logarithms and their properties. 
Permutations and combinations, Binomial theorem for a positive 
integral index, properties of binomial coefficients.
Matrices as a rectangular array of real numbers, equality of 
matrices, addition, multiplication by a scalar and product of matrices, 
transpose of a matrix, determinant of a square matrix of order up to three, 
inverse of a square matrix of order up to three, properties of these matrix 
operations, diagonal, symmetric and skew-symmetric matrices and  their 
properties, solutions of simultaneous linear equations in two or three 
variables.
Addition and multiplication rules of probability, conditional 
probability, Bayes Theorem, independence of events, computation of probability 
of events using permutations and combinations.
Trigonometry: Trigonometric functions, their 
periodicity and graphs, addition and subtraction formulae, formulae involving 
multiple and sub-multiple angles, general solution of trigonometric 
equations.
Relations between sides and angles of a triangle, sine rule, 
cosine rule, half-angle formula and the area of a triangle, inverse 
trigonometric functions (principal value only).
Analytical geometry: 
Two dimensions: Cartesian coordinates, 
distance between two points, section formulae, shift of origin.
Equation of a straight line in various forms, angle between two 
lines, distance of a point from a line; Lines through the point of intersection 
of two given lines, equation of the bisector of the angle between two lines, 
concurrency of lines;  Centroid, orthocentre, incentre and circumcentre of a 
triangle.
Equation of a circle in various forms, equations of tangent, 
normal and chord.
Parametric equations of a circle, intersection of a circle with 
a straight line or a circle, equation of a circle through the points  of  
intersection of two circles and those of a circle and a straight line.
Equations of a parabola, ellipse and hyperbola in standard 
form, their foci, directrices and eccentricity, parametric equations, equations 
of tangent and normal. 
Locus Problems.
Three dimensions: Direction cosines and 
direction ratios, equation of a straight line in space, equation of a plane, 
distance of a point from a plane.
Differential calculus: Real valued functions 
of a real variable, into, onto and one-to-one functions, sum, difference, 
product and quotient of two functions, composite functions, absolute value, 
polynomial, rational, trigonometric, exponential and logarithmic functions.
Limit and continuity of a function, limit and continuity of the 
sum, difference, product and quotient of two functions, L’Hospital rule of 
evaluation of limits of functions.
Even and odd functions, inverse of a function, continuity of 
composite functions, intermediate value property of continuous functions.
Derivative of a function, derivative of the sum,
difference, product and quotient of two functions, chain rule, 
derivatives of polynomial, rational, trigonometric, inverse trigonometric, 
exponential and logarithmic functions.
Derivatives of implicit functions, derivatives up to order two, 
geometrical interpretation of the derivative, tangents and normals, increasing 
and decreasing functions, maximum and minimum values of a function, Rolle’s 
Theorem and Lagrange’s Mean Value Theorem.
Integral calculus: Integration as the inverse 
process of differentiation, indefinite integrals of standard functions, definite 
integrals and their properties, Fundamental Theorem of Integral Calculus.
Integration by parts, integration by the methods of 
substitution and partial fractions, application of definite integrals to the 
determination of areas involving simple curves.
Formation of ordinary differential equations, solution of 
homogeneous differential equations, separation of variables method, linear first 
order differential equations.
Vectors: Addition of vectors, scalar 
multiplication, dot and cross products, scalar triple products and their 
geometrical 
interpretations.
 
Chem Academy provides IIT JAM Physics Complete syllabus, Test Series, Previous year papers, IIT JAM Physics Notes and IIT JAM Physics exam pattern for better preparation. IIT JAM Physics syllabus 2020
ReplyDelete